補足. 離散分布_ベルヌーイ分布

$\gdef \vec#1{\boldsymbol{#1}} \\ \gdef \rank {\mathrm{rank}} \\ \gdef \det {\mathrm{det}} \\ \gdef \Bern {\mathrm{Bern}} \\ \gdef \Bin {\mathrm{Bin}} \\ \gdef \Mn {\mathrm{Mn}} \\ \gdef \Cov {\mathrm{Cov}} \\ \gdef \Po {\mathrm{Po}} \\ \gdef \HG {\mathrm{HG}} \\ \gdef \Geo {\mathrm{Geo}}\\ \gdef \N {\mathrm{N}} \\ \gdef \LN {\mathrm{LN}} \\ \gdef \U {\mathrm{U}} \\ \gdef \t {\mathrm{t}} \\ \gdef \F {\mathrm{F}} \\ \gdef \Exp {\mathrm{Exp}} \\ \gdef \Ga {\mathrm{Ga}} \\ \gdef \Be {\mathrm{Be}} \\ \gdef \NB {\mathrm{NB}}$

(再掲)
$X \sim \Bern(p)$である時、その確率関数$p(x)$は、
$$\begin{aligned} p(x) (= Pr\{ X=x \}) = p^x (1-p)^{1-x} ~~ (x=0, 1) \end{aligned}$$であり、その特性値は、$$\begin{aligned} &{\small ①平均:}E[X] = p \\ &{\small ②分散:}V[X] = p(1 – p)\\ &{\small ③確率母関数:}G^X(s) = ps + (1 – p) \end{aligned}$$となる。

(①平均$E[X]$の証明)
$$\begin{aligned} E[X] &= \sum_{x=0}^{1} x p(x) \\ &= 0 \cdot p(0) + 1 \cdot p(1) \\ &= p \end{aligned}$$

(②分散$V[X]$の証明)
$$\begin{aligned} V[X] &= \sum_{x=0}^{1} (x – E[X])^2 p(x) \\ &= (0 – p)^2 \cdot p(0) + (1 – p)^2 \cdot p(1) \\ &= p^2 (1 – p) + (1 – p)^2 p \\ &= p(1 – p) \end{aligned}$$

(③確率母関数$G^X(s)$の証明)
$$\begin{aligned} G^X(s) &= E[s^X] \\ &= \sum_{x=0}^{1} s^x p(x) \\ &= s^0 \cdot p(0) + s^1 \cdot p(1) \\ &= (1 – p) + sp \\ &= ps + (1 – p) \end{aligned}$$